Math 221: LINEAR ALGEBRA

Chapter 7. Linear Transformations §7-2. Kernel and Image

 $\begin{tabular}{ll} Le & Chen 1 \\ Emory University, 2021 Spring \\ \end{tabular}$

(last updated on 04/19/2021)

What are the Kernel and the Image?

Finding Bases of the Kernel and the Image

Surjections and Injections

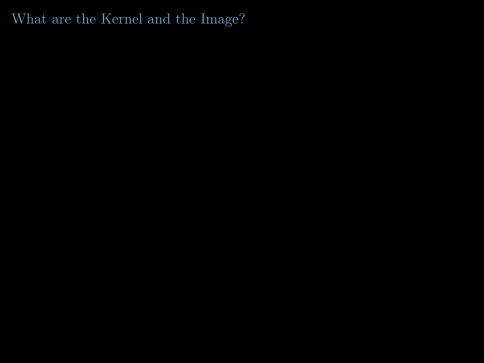
The Dimension Theorem (Rank-Nullity Theorem)

What are the Kernel and the Image?

Finding Bases of the Kernel and the Image

Surjections and Injections

The Dimension Theorem (Rank-Nullity Theorem



What are the Kernel and the Image?

Definition

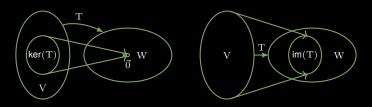
Let V and W be vector spaces, and $T: V \to W$ a linear transformation.

1. The kernel of T (sometimes called the null space of T) is defined to be the set

$$\ker(\mathbf{T}) = \{ \vec{\mathbf{v}} \in \mathbf{V} \mid \mathbf{T}(\vec{\mathbf{v}}) = \vec{0} \}.$$

2. The image of T is defined to be the set

$$im(T) = \{T(\vec{v}) \mid \vec{v} \in V\}.$$



Remark

If A is an $m\times n$ matrix and $T_A:\mathbb{R}^n\to\mathbb{R}^m$ is the linear transformation induced by A, then

- $ightharpoonup \ker(T_A) = \text{null}(A);$
 - $\ker(T_{A}) = \text{null}(A)$ $\ker(T_{A}) = \text{im}(A).$

Let $T: \mathcal{P}_1 \to \mathbb{R}$ be the linear transformation defined by

$$T(p(x)) = p(1) \text{ for all } p(x) \in \mathcal{P}_1.$$

Find ker(T) and im(T).

Let $T: \mathcal{P}_1 \to \mathbb{R}$ be the linear transformation defined by

$$T(p(x)) = p(1)$$
 for all $p(x) \in \mathcal{P}_1$.

Find ker(T) and im(T).

Solution

$$\begin{aligned} \ker(T) &= & \{p(x) \in \mathcal{P}_1 \mid p(1) = 0\} \\ &= & \{ax + b \mid \forall a, b \in \mathbb{R} \quad \text{and} \quad a + b = 0\} \end{aligned}$$

 $= \{ax - a \mid \forall a \in \mathbb{R}\}.$

Let $T: \mathcal{P}_1 \to \mathbb{R}$ be the linear transformation defined by

$$T(p(x)) = p(1)$$
 for all $p(x) \in \mathcal{P}_1$.

Find ker(T) and im(T).

Solution

$$\begin{split} \ker(T) &= & \{ p(x) \in \mathcal{P}_1 \mid p(1) = 0 \} \\ &= & \{ ax + b \mid \forall a, b \in \mathbb{R} \quad and \quad a + b = 0 \} \\ &= & \{ ax - a \mid \forall a \in \mathbb{R} \}. \end{split}$$

$$im(T) &= & \{ p(1) \mid p(x) \in \mathcal{P}_1 \} \\ &= & \{ a + b \mid ax + b \in \mathcal{P}_1 \} \end{split}$$

 $= \mathbb{R}.$

 $= \{a+b \mid \forall a, b \in \mathbb{R}\}\$

Let V and W be vector spaces and T : V \rightarrow W a linear transformation.

Then $\ker(T)$ is a subspace of V and $\operatorname{im}(T)$ is a subspace of W.

Let V and W be vector spaces and $T: V \to W$ a linear transformation. Then ker(T) is a subspace of V and im(T) is a subspace of W.

Proof. (that ker(T) is a subspace of V)

1. Let $\vec{0}_V$ and $\vec{0}_W$ denote the zero vectors of V and W, respectively. T is a linear transformation $\Rightarrow T(\vec{0}_V) = \vec{0}_W \Rightarrow \vec{0}_V \in \ker(T)$.

Let V and W be vector spaces and $T: V \to W$ a linear transformation. Then ker(T) is a subspace of V and im(T) is a subspace of W.

Proof. (that ker(T) is a subspace of V)

- 1. Let $\vec{0}_V$ and $\vec{0}_W$ denote the zero vectors of V and W, respectively. T is a linear transformation $\Rightarrow T(\vec{0}_V) = \vec{0}_W \Rightarrow \vec{0}_V \in \ker(T)$.
- 2. Let $\vec{v}_1, \vec{v}_2 \in \ker(T)$. Then $T(\vec{v}_1) = \vec{0}$, $T(\vec{v}_2) = \vec{0}$, and

$$T(\vec{v}_1 + \vec{v}_2) = T(\vec{v}_1) + T(\vec{v}_2) = \vec{0} + \vec{0} = \vec{0}.$$

Thus $\vec{v}_1 + \vec{v}_2 \in \ker(T)$.

Let V and W be vector spaces and $T: V \to W$ a linear transformation. Then ker(T) is a subspace of V and im(T) is a subspace of W.

Proof. (that ker(T) is a subspace of V)

- 1. Let $\vec{0}_V$ and $\vec{0}_W$ denote the zero vectors of V and W, respectively. T is a linear transformation $\Rightarrow T(\vec{0}_V) = \vec{0}_W \Rightarrow \vec{0}_V \in \ker(T)$.
- 2. Let $\vec{v}_1, \vec{v}_2 \in \ker(T)$. Then $T(\vec{v}_1) = \vec{0}$, $T(\vec{v}_2) = \vec{0}$, and

$$T(\vec{v}_1 + \vec{v}_2) = T(\vec{v}_1) + T(\vec{v}_2) = \vec{0} + \vec{0} = \vec{0}.$$

Thus $\vec{v}_1 + \vec{v}_2 \in \ker(T)$.

3. Let $\vec{v}_1 \in \ker(T)$ and let $k \in \mathbb{R}$. Then $T(\vec{v}_1) = \vec{0}$, and

$$T(k\vec{v}_1) = kT(\vec{v}_1) = k(\vec{0}) = \vec{0}.$$

Thus $k\vec{v}_1 \in ker(T)$.

Let V and W be vector spaces and $T: V \to W$ a linear transformation. Then ker(T) is a subspace of V and im(T) is a subspace of W.

Proof. (that ker(T) is a subspace of V)

- 1. Let $\vec{0}_V$ and $\vec{0}_W$ denote the zero vectors of V and W, respectively. T is a linear transformation $\Rightarrow T(\vec{0}_V) = \vec{0}_W \Rightarrow \vec{0}_V \in \ker(T)$.
- 2. Let $\vec{v}_1, \vec{v}_2 \in \ker(T)$. Then $T(\vec{v}_1) = \vec{0}$, $T(\vec{v}_2) = \vec{0}$, and

$$T(\vec{v}_1 + \vec{v}_2) = T(\vec{v}_1) + T(\vec{v}_2) = \vec{0} + \vec{0} = \vec{0}.$$

Thus $\vec{v}_1 + \vec{v}_2 \in \ker(T)$.

3. Let $\vec{v}_1 \in \ker(T)$ and let $k \in \mathbb{R}$. Then $T(\vec{v}_1) = \vec{0}$, and

$$T(k\vec{v}_1) = kT(\vec{v}_1) = k(\vec{0}) = \vec{0}.$$

Thus $k\vec{v}_1 \in ker(T)$.

By the Subspace Test, ker(T) is a subspace of V.

1. Let $\vec{0}_{V}$ and $\vec{0}_{W}$ denote the zero vectors of V and W, respectively.

 $T \text{ is a linear transformation} \Rightarrow T(\vec{0}_V) = \vec{0}_W \Rightarrow \vec{0}_W \in \operatorname{im}(T).$

- 1. Let $\vec{0}_V$ and $\vec{0}_W$ denote the zero vectors of V and W, respectively. T is a linear transformation $\Rightarrow T(\vec{0}_V) = \vec{0}_W \Rightarrow \vec{0}_W \in \operatorname{im}(T)$.
 - 2. Let $\vec{w}_1, \vec{w}_2 \in \text{im}(T)$. Then there exist $\vec{v}_1, \vec{v}_2 \in V$ such that $T(\vec{v}_1) = \vec{w}_1$, $T(\vec{v}_2) = \vec{w}_2$, and thus

$$\vec{\mathbf{w}}_1 + \vec{\mathbf{w}}_2 = \mathbf{T}(\vec{\mathbf{v}}_1) + \mathbf{T}(\vec{\mathbf{v}}_2) = \mathbf{T}(\vec{\mathbf{v}}_1 + \vec{\mathbf{v}}_2).$$

$$\mathbf{w}_1 + \mathbf{w}_2 = \mathbf{1}(\mathbf{v}_1) + \mathbf{1}(\mathbf{v}_2) = \mathbf{1}(\mathbf{v}_1 + \mathbf{v}_2)$$

Since $\vec{v}_1 + \vec{v}_2 \in V$, $\vec{w}_1 + \vec{w}_2 \in im(T)$.

- 1. Let $\vec{0}_{V}$ and $\vec{0}_{W}$ denote the zero vectors of V and W, respectively. T is a linear transformation $\Rightarrow T(\vec{0}_{V}) = \vec{0}_{W} \Rightarrow \vec{0}_{W} \in \text{im}(T)$.
- 2. Let $\vec{w}_1, \vec{w}_2 \in \operatorname{im}(T)$. Then there exist $\vec{v}_1, \vec{v}_2 \in V$ such that $T(\vec{v}_1) = \vec{w}_1$, $T(\vec{v}_2) = \vec{w}_2$, and thus

$$\vec{w}_1 + \vec{w}_2 = T(\vec{v}_1) + T(\vec{v}_2) = T(\vec{v}_1 + \vec{v}_2).$$

Since $\vec{v}_1 + \vec{v}_2 \in V$, $\vec{w}_1 + \vec{w}_2 \in \text{im}(T)$.

3. Let $\vec{w}_1 \in \text{im}(V)$ and let $k \in \mathbb{R}$. Then there exists $\vec{v}_1 \in V$ such that $T(\vec{v}_1) = \vec{w}_1$, and

$$\mathbf{k}\vec{\mathbf{w}}_1 = \mathbf{k}\mathrm{T}(\vec{\mathbf{v}}_1) = \mathrm{T}(\mathbf{k}\vec{\mathbf{v}}_1).$$

Since $k\vec{v}_1 \in V$, $k\vec{w}_1 \in im(T)$.

- 1. Let $\vec{0}_V$ and $\vec{0}_W$ denote the zero vectors of V and W, respectively. T is a linear transformation $\Rightarrow T(\vec{0}_V) = \vec{0}_W \Rightarrow \vec{0}_W \in \text{im}(T)$.
- 2. Let $\vec{w}_1, \vec{w}_2 \in \text{im}(T)$. Then there exist $\vec{v}_1, \vec{v}_2 \in V$ such that $T(\vec{v}_1) = \vec{w}_1$, $T(\vec{v}_2) = \vec{w}_2$, and thus

$$\vec{\mathbf{w}}_1 + \vec{\mathbf{w}}_2 = \mathbf{T}(\vec{\mathbf{v}}_1) + \mathbf{T}(\vec{\mathbf{v}}_2) = \mathbf{T}(\vec{\mathbf{v}}_1 + \vec{\mathbf{v}}_2).$$

Since $\vec{v}_1 + \vec{v}_2 \in V$, $\vec{w}_1 + \vec{w}_2 \in \text{im}(T)$.

3. Let $\vec{w}_1 \in \text{im}(V)$ and let $k \in \mathbb{R}$. Then there exists $\vec{v}_1 \in V$ such that $T(\vec{v}_1) = \vec{w}_1$, and

$$k\vec{w}_1 = kT(\vec{v}_1) = T(k\vec{v}_1).$$

Since $k\vec{v}_1 \in V$, $k\vec{w}_1 \in im(T)$.

By the Subspace Test, im(T) is a subspace of W.

Definition

Let V and W be vector spaces and $T: V \to W$ a linear transformation.

1. The dimension of ker(T), dim(ker(T)) is called the nullity of T and is denoted nullity(T), i.e.,

 $\operatorname{nullity}(T) = \dim(\ker(T)).$

Definition

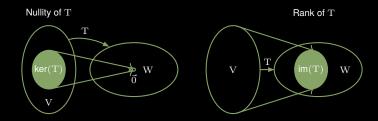
Let V and W be vector spaces and $T: V \to W$ a linear transformation.

 The dimension of ker(T), dim(ker(T)) is called the nullity of T and is denoted nullity(T), i.e.,

$$\operatorname{nullity}(T) = \dim(\ker(T)).$$

 The dimension of im(T), dim(im(T)) is called the rank of T and is denoted rank (T), i.e.,

$$rank(T) = dim(im(T)).$$



Example

If A is an $m \times n$ matrix, then $T_A : \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation and

$$\begin{split} \operatorname{im}(T_A) &= \operatorname{im}(A) = \operatorname{col}(A) \\ & \quad \quad \Downarrow \\ \\ \operatorname{rank}\ (T_A) &= \operatorname{dim}(\operatorname{im}(T_A)) \\ &= \operatorname{dim}(\operatorname{col}(A)) \\ &= \operatorname{rank}\ (A) \\ &= \operatorname{dim}(\operatorname{row}(A)) \end{split} \qquad \begin{aligned} \operatorname{ker}(T_A) &= \operatorname{null}(A) \\ & \quad \quad \Downarrow \\ \\ \operatorname{nullity}(T_A) &= \operatorname{dim}(\operatorname{null}(A)) \\ &= \text{``# of free parameters in } Ax = 0 \end{aligned}$$

$$\updownarrow$$

$$rank~(A) + nullity(T_A) = \dim(\mathbb{R}^n)$$

What are the Kernel and the Image

Finding Bases of the Kernel and the Image

Surjections and Injections

The Dimension Theorem (Rank-Nullity Theorem

Finding bases of the kernel and the image

Example (continued)

For the linear transformation T defined by $T: \mathcal{P}_1 \to \mathbb{R}$

$$T(p(x))=p(1) \text{ for all } p(x)\in \mathcal{P}_1,$$

we found that

$$\ker(T) = \{ax - a \mid a \in \mathbb{R}\} \text{ and } \operatorname{im}(T) = \mathbb{R}.$$

Finding bases of the kernel and the image

Example (continued)

For the linear transformation T defined by $T: \mathcal{P}_1 \to \mathbb{R}$

$$T(p(x)) = p(1)$$
 for all $p(x) \in \mathcal{P}_1$,

we found that

$$ker(T) = \{ax - a \mid a \in \mathbb{R}\} \text{ and } im(T) = \mathbb{R}.$$

- $ightharpoonup \ker(T) = \operatorname{span}\{(x-1)\} \text{ and } \dim(\ker(T)) = 1 = \operatorname{nullity}(T).$
- ightharpoonup im(T) = span{1} and dim(im(T)) = 1 = rank (T)
- ► Hence,

$$\operatorname{nullity}(T) + \operatorname{rank}(T) = \dim(\mathcal{P}_1) = 2.$$

Let $T: \mathbf{M}_{22} \to \mathbf{M}_{22}$ be defined by

$$T\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a+b & b+c \\ c+d & d+a \end{bmatrix} \text{ for all } \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathbf{M}_{22}.$$

Then T is a linear transformation (you should be able to prove this). Find a basis of ker(T) and a basis of im(T).

Let $T: \mathbf{M}_{22} \to \mathbf{M}_{22}$ be defined by

$$T\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a+b & b+c \\ c+d & d+a \end{bmatrix} \text{ for all } \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathbf{M}_{22}.$$

Then T is a linear transformation (you should be able to prove this). Find a basis of ker(T) and a basis of im(T).

Solution

Suppose
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \ker(T)$$
. Then
$$T \begin{bmatrix} a & b \end{bmatrix} = \begin{bmatrix} a+b & b+c \end{bmatrix} = \begin{bmatrix} a+b & b+c \end{bmatrix}$$

$$T\left[\begin{array}{cc} a & b \\ c & d \end{array}\right] = \left[\begin{array}{cc} a+b & b+c \\ c+d & d+a \end{array}\right] = \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right].$$

Let $T: \mathbf{M}_{22} \to \mathbf{M}_{22}$ be defined by

$$T\left[\begin{array}{cc} a & b \\ c & d \end{array}\right] = \left[\begin{array}{cc} a+b & b+c \\ c+d & d+a \end{array}\right] \text{ for all } \left[\begin{array}{cc} a & b \\ c & d \end{array}\right] \in \textbf{M}_{22}.$$

Then T is a linear transformation (you should be able to prove this). Find a basis of ker(T) and a basis of im(T).

Solution

Suppose
$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} \in \ker(T)$$
. Then

$$\mathbf{T} \left[\begin{array}{cc} \mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d} \end{array} \right] = \left[\begin{array}{cc} \mathbf{a} + \mathbf{b} & \mathbf{b} + \mathbf{c} \\ \mathbf{c} + \mathbf{d} & \mathbf{d} + \mathbf{a} \end{array} \right] = \left[\begin{array}{cc} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{array} \right].$$

This gives us a system of four equations in the four variables a, b, c, d:

$$\begin{cases} a+b=0\\ b+c=0\\ c+d=0\\ d+a=0 \end{cases}$$

This system has solution a=-t, b=t, c=-t, d=t for any $t\in\mathbb{R},$ and thus

$$\ker(T) = \left\{ \begin{bmatrix} -t & t \\ -t & t \end{bmatrix} \middle| t \in \mathbb{R} \right\} = \operatorname{span} \left\{ \begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix} \right\}.$$

This system has solution a=-t, b=t, c=-t, d=t for any $t\in \mathbb{R},$ and thus

$$\ker(\mathrm{T}) = \left\{ \left[\begin{array}{cc} -\mathrm{t} & \mathrm{t} \\ -\mathrm{t} & \mathrm{t} \end{array} \right] \;\middle|\; \mathrm{t} \in \mathbb{R} \right\} = \mathrm{span} \left\{ \left[\begin{array}{cc} -1 & 1 \\ -1 & 1 \end{array} \right] \right\}.$$

Let

$$B = \left\{ \left[\begin{array}{cc} -1 & 1 \\ -1 & 1 \end{array} \right] \right\}.$$

Since B is an independent subset of \mathbf{M}_{22} and $\mathrm{span}(B) = \ker(T)$, B is a basis of $\ker(T)$.

As for im(T), notice that

$$\begin{split} \operatorname{im}(T) &= \left. \left\{ \left[\begin{array}{cc} a+b & b+c \\ c+d & d+a \end{array} \right] \; \middle| \; a,b,c,d \in \mathbb{R} \right\} \\ &= & \operatorname{span} \left\{ \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right], \left[\begin{array}{cc} 1 & 1 \\ 0 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 0 \\ 1 & 1 \end{array} \right] \right\}. \end{split}$$

As for im(T), notice that

$$\begin{split} \operatorname{im}(T) &= \left. \left\{ \left[\begin{array}{cc} a+b & b+c \\ c+d & d+a \end{array} \right] \, \left| \begin{array}{cc} a,b,c,d \in \mathbb{R} \right. \right\} \\ &= & \operatorname{span} \left\{ \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right], \left[\begin{array}{cc} 1 & 1 \\ 0 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 0 \\ 1 & 1 \end{array} \right] \right\}. \end{split}$$

Let

Set
$$S = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} \right\}.$$

As for im(T), notice that

$$\begin{split} \operatorname{im}(T) &= \left\{ \left[\begin{array}{cc} a+b & b+c \\ c+d & d+a \end{array} \right] \;\middle|\; a,b,c,d \in \mathbb{R} \right\} \\ &= \operatorname{span} \left\{ \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right], \left[\begin{array}{cc} 1 & 1 \\ 0 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 0 \\ 1 & 1 \end{array} \right] \right\}. \end{split}$$

Let

$$S = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} \right\}.$$

S is a dependent subset of M_{22} , but (check this yourselves)

$$\mathbf{C} = \left\{ \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right], \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 0 \\ 1 & 1 \end{array} \right] \right\}$$

is an independent subset of S. Since span(C) = span(S) = im(T) and C is independent, C is a basis of im(T).

Remark

$$\dim(\mathbf{M}_{22}) = 4$$

$$\operatorname{nullity}(T) = \dim(\ker(T)) = 1$$

$$\operatorname{rank}(T) = \dim(\operatorname{im}(T)) = 3$$

$$\downarrow$$

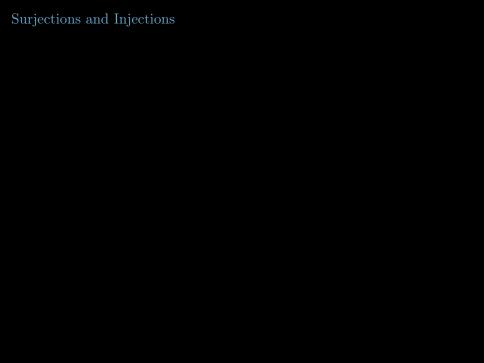
$$\operatorname{nullity}(T) + \operatorname{rank}(T) = \dim(\mathbf{M}_{22})$$

What are the Kernel and the Image'

Finding Bases of the Kernel and the Image

Surjections and Injections

The Dimension Theorem (Rank-Nullity Theorem



Surjections and Injections

Definition

Let V and W be vector spaces and $T: V \to W$ a linear transformation.

- 1. T is onto (or surjective) if im(T) = W.
- 2. T is one-to-one (or injective) if,

$$T(\vec{v}) = T(\vec{w}) \quad \forall \vec{v}, \vec{w} \in V \qquad \Rightarrow \qquad \vec{v} = \vec{w}.$$

Surjections and Injections

Definition

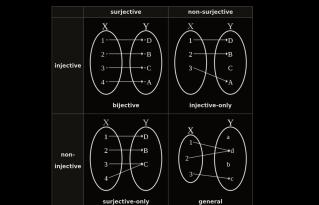
Let V and W be vector spaces and $T: V \to W$ a linear transformation.

- 1. T is onto (or surjective) if im(T) = W.
- 2. T is one-to-one (or injective) if,

$$T(\vec{v}) = T(\vec{w}) \quad \forall \vec{v}, \vec{w} \in V \qquad \Rightarrow \qquad \vec{v} = \vec{w}.$$

Example

Let V be a vector space. Then the identity operator on V, $1_V:V\to V,$ is one-to-one and onto.



Let V and W be vector spaces and T : V \rightarrow W a linear transformation. Then T is one-to-one if and only if $\ker(T) = \{\vec{0}\}.$

Let V and W be vector spaces and T: V \rightarrow W a linear transformation. Then T is one-to-one if and only if $\ker(T) = \{\overline{0}\}.$

Proof.

$$(\Rightarrow)$$
 Let $\vec{v} \in \ker(T)$. Then

$$T(\vec{v}) = \vec{0} = T(\vec{0}).$$

T is one-to-one
$$\Rightarrow$$
 $\vec{v} = \vec{0}$ \Rightarrow $\ker T = \{\vec{0}\}$

Let V and W be vector spaces and T : V \rightarrow W a linear transformation. Then T is one-to-one if and only if $\ker(T) = \{\vec{0}\}.$

Proof.

 (\Rightarrow) Let $\vec{v} \in \ker(T)$. Then

$$T(\vec{v}) = \vec{0} = T(\vec{0}).$$

T is one-to-one
$$\Rightarrow$$
 $\vec{v} = \vec{0}$ \Rightarrow $\ker T = {\vec{0}}$

 (\Leftarrow) Conversely, suppose that $\ker(T) = \{\vec{0}\}$, and let $\vec{v}, \vec{w} \in V$ be such that

$$T(\vec{v}) = T(\vec{w}).$$

Then $T(\vec{v}) - T(\vec{w}) = \vec{0}$, and since T is a linear transformation

$$T(\vec{v} - \vec{w}) = \vec{0}.$$

By definition, $\vec{v} - \vec{w} \in \ker(T)$, implying that $\vec{v} - \vec{w} = \vec{0}$. Therefore $\vec{v} = \vec{w}$, and hence T is one-to-one.

Let $T: \mathbf{M}_{22} \to \mathbb{R}^2$ be a linear transformation defined by

$$T\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a+d \\ b+c \end{bmatrix} \text{ for all } \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathbf{M}_{22}.$$

Prove that T is onto but not one-to-one.

Let $T: \mathbf{M}_{22} \to \mathbb{R}^2$ be a linear transformation defined by

$$T \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] = \left[\begin{array}{cc} a+d \\ b+c \end{array} \right] \text{ for all } \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] \in \mathbf{M}_{22}.$$

Prove that T is onto but not one-to-one.

Proof.

Let
$$\begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2$$
. Since $T \begin{bmatrix} x & y \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$, T is onto.

Observe that $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \in \ker(T)$, so $\ker(T) \neq \{\vec{0}_{22}\}$. By the previous

Theorem, T is not one-to-one.

Suppose U is an invertible $m \times m$ matrix and let $T : M_{mn} \to M_{mn}$ be defined by

 $T(A)=UA \text{ for all } A\in {\color{red}M_{mn}}.$

Then T is a linear transformation (this is left to you to verify). Prove that T is one-to-one and onto.

Suppose U is an invertible $m \times m$ matrix and let $T: \mathbf{M}_{mn} \to \mathbf{M}_{mn}$ be defined by

$$T(A) = UA \text{ for all } A \in \mathbf{M}_{mn}.$$

Then T is a linear transformation (this is left to you to verify). Prove that T is one-to-one and onto.

Proof.

Suppose $A, B \in M_{mn}$ and that T(A) = T(B). Then UA = UB; since U is invertible

$$\begin{array}{rcl} U^{-1}(UA) & = & U^{-1}(UB) \\ (U^{-1}U)A & = & (U^{-1}U)B \\ I_{mm}A & = & I_{mm}B \\ A & = & B. \end{array}$$

Therefore, T is one-to-one.

Proof. (continued)

and therefore T is onto.

To prove that T is onto, let $B \in \mathbf{M}_{mn}$ and let $A = U^{-1}B$. Then

$$T(A) = UA = U(U^{-1}B) = (UU^{-1})B = I_{mm}B = B,$$

Let $S: \mathcal{P}_2 \to \mathbf{M}_{22}$ be a linear transformation defined by

$$S(ax^{2} + bx + c) = \begin{bmatrix} a+b & a+c \\ b-c & b+c \end{bmatrix} \text{ for all } ax^{2} + bx + c \in \mathcal{P}_{2}.$$

Prove that S is one-to-one but not onto.

Let $S: \mathcal{P}_2 \to \mathbf{M}_{22}$ be a linear transformation defined by

$$S(ax^{2} + bx + c) = \begin{bmatrix} a+b & a+c \\ b-c & b+c \end{bmatrix} \text{ for all } ax^{2} + bx + c \in \mathcal{P}_{2}.$$

Prove that S is one-to-one but not onto.

Proof.

By definition,

$$ker(S) = {ax^2 + bx + c \in \mathcal{P}_2 \mid a + b = 0, a + c = 0, b - c = 0, b + c = 0}.$$

Suppose $p(x) = ax^2 + bx + c \in ker(S)$. This leads to a homogeneous system of four equations in three variables:

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \rightarrow \cdots \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Since the unique solution is a = b = c = 0, $ker(S) = {\vec{0}}$, and thus S is one-to-one.

Proof. (continued)

To show that S is **not** onto, show that $\operatorname{im}(S) \neq \mathcal{P}_2$; i.e., find a matrix $A \in \mathbf{M}_{22}$ such that for every $p(x) \in \mathcal{P}_2$, $S(p(x)) \neq A$. Let

$$\mathbf{A} = \left[\begin{array}{cc} 0 & 1 \\ 0 & 2 \end{array} \right],$$

and suppose $p(x) = ax^2 + bx + c \in \mathcal{P}_2$ is such that S(p(x)) = A. Then

$$a + b = 0$$
 $a + c = 1$
 $b - c = 0$ $b + c = 2$

Solving this system

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & 1 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & 1 & 2 \end{bmatrix}.$$

Since the system is inconsistent, there is no $p(x) \in \mathcal{P}_2$ so that S(p(x)) = A, and therefore S is not onto.

Problem (One-to-one linear transformations preserve independent sets)

Let V and W be vector spaces and $T: V \to W$ a linear transformation. Prove that if T is one-to-one and $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k\}$ is an independent subset of V, then $\{T(\vec{v}_1), T(\vec{v}_2), \dots, T(\vec{v}_k)\}$ is an independent subset of W. Problem (One-to-one linear transformations preserve independent sets) $\,$

Let V and W be vector spaces and $T:V\to W$ a linear transformation. Prove that if T is one-to-one and $\{\vec{v}_1,\vec{v}_2,\ldots,\vec{v}_k\}$ is an independent subset of V, then $\{T(\vec{v}_1),T(\vec{v}_2),\ldots,T(\vec{v}_k)\}$ is an independent subset of W.

Proof.

Let $\vec{0}_{V}$ and $\vec{0}_{W}$ denote the zero vectors of V and W, respectively. Suppose that

$$a_1 T(\vec{v}_1) + a_2 T(\vec{v}_2) + \dots + a_k T(\vec{v}_k) = \vec{0}_W$$

for some $a_1, a_2, \ldots, a_k \in \mathbb{R}$. Since linear transformations preserve linear combinations (addition and scalar multiplication),

$$T(a_1\vec{v}_1 + a_2\vec{v}_2 + \dots + a_k\vec{v}_k) = \vec{0}_W.$$

Now, since T is one-to-one, $ker(T) = {\vec{0}_V}$, and thus

$$a_1 \vec{v}_1 + a_2 \vec{v}_2 + \dots + a_k \vec{v}_k = \vec{0}_V.$$

However, $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k\}$ is independent, and hence $a_1 = a_2 = \dots = a_k = 0$. Therefore, $\{T(\vec{v}_1), T(\vec{v}_2), \dots, T(\vec{v}_k)\}$ is independent.

Problem (Onto linear transformations preserve spanning sets)

Let V and W be vector spaces and $T: V \to W$ a linear transformation. Prove that if T is onto and $V = \text{span}\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k\}$, then

$$W = span\{T(\vec{v}_1), T(\vec{v}_2), \dots, T(\vec{v}_k)\}.$$

Problem (Onto linear transformations preserve spanning sets)

Let V and W be vector spaces and $T: V \to W$ a linear transformation. Prove that if T is onto and $V = \text{span}\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k\}$, then

$$W=\mathrm{span}\{T(\vec{v}_1),T(\vec{v}_2),\ldots,T(\vec{v}_k)\}.$$

Proof.

Suppose that T is onto and let $\vec{w} \in W$. Then there exists $\vec{v} \in V$ such that $T(\vec{v}) = \vec{w}$. Since $V = \operatorname{span}\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k\}$, there exist $a_1, a_2, \dots a_k \in \mathbb{R}$ such that $\vec{v} = a_1\vec{v}_1 + a_2\vec{v}_2 + \dots + a_k\vec{v}_k$. Since T is a linear transformation,

$$\begin{split} \vec{w} &= T(\vec{v}) &= T(a_1 \vec{v}_1 + a_2 \vec{v}_2 + \dots + a_k \vec{v}_k) \\ &= a_1 T(\vec{v}_1) + a_2 T(\vec{v}_2) + \dots + a_k T(\vec{v}_k), \end{split}$$

i.e., $\vec{w} \in \text{span}\{T(\vec{v}_1), T(\vec{v}_2), \dots, T(\vec{v}_k)\}\$, and thus

$$W \subseteq \operatorname{span}\{T(\vec{v}_1), T(\vec{v}_2), \ldots, T(\vec{v}_k)\}.$$

On the other hand,

$$T(\vec{v}_1), T(\vec{v}_2), \ldots, T(\vec{v}_k) \in W \quad \Longrightarrow \quad \operatorname{span}\{T(\vec{v}_1), T(\vec{v}_2), \ldots, T(\vec{v}_k)\} \subseteq W.$$

Therefore,
$$W = \text{span}\{T(\vec{v}_1), T(\vec{v}_2), \dots, T(\vec{v}_k)\}.$$

Suppose A is an $m \times n$ matrix. How do we determine if $T_A : \mathbb{R}^n \to \mathbb{R}^m$ is onto? How do we determine if $T_A : \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one?

Suppose A is an $m \times n$ matrix. How do we determine if $T_A : \mathbb{R}^n \to \mathbb{R}^m$ is onto? How do we determine if $T_A : \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one?

Theorem

Let A be an $m \times n$ matrix, and $T_A : \mathbb{R}^n \to \mathbb{R}^m$ the linear transformation induced by A.

- 1. T_A is onto if and only if rank (A) = m.
- 2. T_A is one-to-one if and only if rank (A) = n.

Suppose A is an $m \times n$ matrix. How do we determine if $T_A : \mathbb{R}^n \to \mathbb{R}^m$ is onto? How do we determine if $T_A : \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one?

Theorem

Let A be an $m \times n$ matrix, and $T_A : \mathbb{R}^n \to \mathbb{R}^m$ the linear transformation induced by A.

- 1. T_A is onto if and only if rank (A) = m.
- 2. T_A is one-to-one if and only if rank (A) = n.

Proof. (sketch)

- 1. T_A is onto if and only if $\operatorname{im}(T_A) = \mathbb{R}^m$. This is equivalent to $\operatorname{col}(A) = \mathbb{R}^m$, which occurs if and only if $\operatorname{dim}(\operatorname{col}(A)) = m$, i.e., $\operatorname{rank}(A) = m$.
- 2. $\ker(T_A) = \operatorname{null}(A)$, and $\operatorname{null}(A) = \{\vec{0}\}$ if and only if $A\vec{x} = \vec{0}$ has the unique solution $\vec{x} = \vec{0}$. Thus and row echelon form of A has a leading one in every column, which occurs if and only if rank (A) = n.

What are the Kernel and the Image?

Finding Bases of the Kernel and the Image

Surjections and Injections

The Dimension Theorem (Rank-Nullity Theorem)

The Dimension Theorem (Rank-Nullity Theorem)

Suppose A is an $m \times n$ matrix with rank r. Since $\operatorname{im}(T_A) = \operatorname{col}(A)$,

$$\dim(\operatorname{im}(T_A)) = \operatorname{rank}(A) = r.$$

We also know that $\ker(T_A) = \operatorname{null}(A)$, and that $\dim(\operatorname{null}(A)) = n - r$. Thus, $\underline{\dim(\operatorname{im}(T_A))} + \underline{\dim(\ker(T_A))} = n = \dim \ \mathbb{R}^n.$

The Dimension Theorem (Rank-Nullity Theorem)

Suppose A is an $m \times n$ matrix with rank r. Since $im(T_A) = col(A)$,

$$dim(im(T_A)) = rank(A) = r.$$

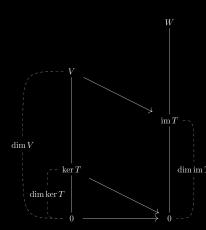
We also know that $\ker(T_A)=\operatorname{null}(A)$, and that $\dim(\operatorname{null}(A))=n-r$. Thus, $\dim(\operatorname{im}(T_A))+\dim(\ker(T_A))=n=\dim\ \mathbb{R}^n.$

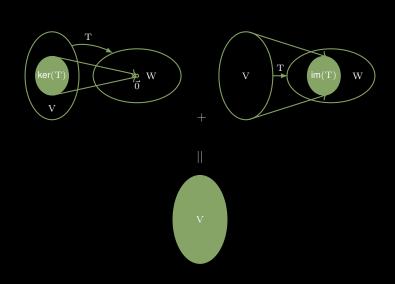
Theorem (Dimension Theorem (Rank-Nullity Theorem))

Let V and W be vector spaces and $T: V \to W$ a linear transformation. If $\ker(T)$ and $\operatorname{im}(T)$ are both finite dimensional, then V is finite dimensional, and

$$\dim(V) = \dim(\ker(T)) + \dim(\operatorname{im}(T)).$$

Equivalently, $\dim(V) = \text{nullity}(T) + \text{rank}(T)$.





Proof. (Outline)

Let $\vec{w} \in \text{im}(T)$; then $\vec{w} = T(\vec{v})$ for some $\vec{v} \in V$. Suppose

$$\left\{T(\vec{b}_1), T(\vec{b}_2), \dots, T(\vec{b}_r)\right\}$$

is a basis of im(T), and that

$$\left\{\vec{f}_1, \vec{f}_2, \ldots, \vec{f}_k\right\}$$

is a basis of ker(T). We define

$$B = \left\{ \vec{b}_1, \vec{b}_2, \dots, \vec{b}_r, \vec{f}_1, \vec{f}_2, \dots, \vec{f}_k \right\}.$$

To prove that B is a basis of V, it remains to prove that B spans V and that B is linearly independent.

Since B is independent and spans V, B is a basis of V, implying V is finite dimensional (V is spanned by a finite set of vectors). Furthermore, |B| = r + k, so

$$\dim(V) = \dim(\operatorname{im}(T)) + \dim(\ker(T)).$$

Remark

 It is not an assumption of the theorem that V is finite dimensional. Rather, it is a consequence of the assumption that both im(T) and ker(T) are finite dimensional.

Remark

- It is not an assumption of the theorem that V is finite dimensional. Rather, it is a consequence of the assumption that both im(T) and ker(T) are finite dimensional.
- 2. As a consequence of the Dimension Theorem, if V is a finite dimensional vector space and either $\dim(\ker(T))$ or $\dim(\operatorname{im}(T))$ is known, then the other can be easily found.

Remark

- It is not an assumption of the theorem that V is finite dimensional. Rather, it is a consequence of the assumption that both im(T) and ker(T) are finite dimensional.
- 2. As a consequence of the Dimension Theorem, if V is a finite dimensional vector space and either $\dim(\ker(T))$ or $\dim(\operatorname{im}(T))$ is known, then the other can be easily found.

Example

Let V and W be vector spaces and $T:V\to W$ a linear transformation. If V is finite dimensional, then it follows that

 $\dim(\ker(T)) \le \dim(V)$ and $\dim(\operatorname{im}(T)) \le \dim(V)$.

is a basis of $ker(E_a)$.

For $a \in \mathbb{R}$, recall that the linear transformation $E_a : \mathcal{P}_n \to \mathbb{R}$, the evaluation map at a, is defined as

Prove that E_a is onto, and that

 $B = \{(x - a), (x - a)^{2}, (x - a)^{3}, \dots, (x - a)^{n}\}\$

 $E_a(p(x)) = p(a)$ for all $p(x) \in \mathcal{P}_n$.

Let $t\in\mathbb{R},$ and choose $p(x)=t\in\mathcal{P}_n.$ Then p(a)=t, so $E_a(p(x))=t,$ i.e., E_a is onto.

Let $t \in \mathbb{R}$, and choose $p(x) = t \in \mathcal{P}_n$. Then p(a) = t, so $E_a(p(x)) = t$, i.e., E_a is onto.

By the Dimension Theorem,

$$n + 1 = \dim(\mathcal{P}_n) = \dim(\ker(E_a)) + \dim(\operatorname{im}(E_a)).$$

Since E_a is onto, $\dim(\operatorname{im}(E_a)) = \dim(\mathbb{R}) = 1$, and thus $\dim(\ker(E_a)) = n$.

Let $t \in \mathbb{R}$, and choose $p(x) = t \in \mathcal{P}_n$. Then p(a) = t, so $E_a(p(x)) = t$, i.e., E_a is onto.

By the Dimension Theorem,

$$n + 1 = \dim(\mathcal{P}_n) = \dim(\ker(E_a)) + \dim(\operatorname{im}(E_a)).$$

Since
$$E_a$$
 is onto, $\dim(\operatorname{im}(E_a)) = \dim(\mathbb{R}) = 1$, and thus $\dim(\ker(E_a)) = n$.

It now suffices to find n independent polynomials in ker(E_a).

Let $t \in \mathbb{R}$, and choose $p(x) = t \in \mathcal{P}_n$. Then p(a) = t, so $E_a(p(x)) = t$, i.e., E_a is onto.

By the Dimension Theorem,

$$n + 1 = \dim(\mathcal{P}_n) = \dim(\ker(E_a)) + \dim(\operatorname{im}(E_a)).$$

Since E_a is onto, $\dim(\operatorname{im}(E_a)) = \dim(\mathbb{R}) = 1$, and thus $\dim(\ker(E_a)) = n$.

It now suffices to find n independent polynomials in ker(E_a).

Note that $(x-a)^j \in \ker(E_a)$ for $j=1,2,\ldots,n,$ so $B \subseteq \ker(E_a)$.

Let $t \in \mathbb{R}$, and choose $p(x) = t \in \mathcal{P}_n$. Then p(a) = t, so $E_a(p(x)) = t$, i.e., E_a is onto.

By the Dimension Theorem,

$$n+1=\dim(\mathcal{P}_n)=\dim(\ker(E_a))+\dim(\operatorname{im}(E_a)).$$

Since E_a is onto, $\dim(\operatorname{im}(E_a)) = \dim(\mathbb{R}) = 1$, and thus $\dim(\ker(E_a)) = n$.

It now suffices to find n independent polynomials in ker(E_a).

Note that $(x-a)^j \in \ker(E_a)$ for $j=1,2,\ldots,n,$ so $B \subseteq \ker(E_a).$

Furthermore, B is independent because the polynomials in B have distinct degrees.

Let $t \in \mathbb{R}$, and choose $p(x) = t \in \mathcal{P}_n$. Then p(a) = t, so $E_a(p(x)) = t$, i.e., E_a is onto.

By the Dimension Theorem,

$$n + 1 = \dim(\mathcal{P}_n) = \dim(\ker(E_a)) + \dim(\operatorname{im}(E_a)).$$

Since E_a is onto, $\dim(\operatorname{im}(E_a)) = \dim(\mathbb{R}) = 1$, and thus $\dim(\ker(E_a)) = n$.

It now suffices to find n independent polynomials in ker(E_a).

Note that $(x-a)^j \in \ker(E_a)$ for $j=1,2,\ldots,n,$ so $B \subseteq \ker(E_a).$

Furthermore, B is independent because the polynomials in B have distinct degrees.

Since $|B| = n = \dim(\ker(E_a))$, B spans $\ker(E_a)$.

Let $t \in \mathbb{R}$, and choose $p(x) = t \in \mathcal{P}_n$. Then p(a) = t, so $E_a(p(x)) = t$, i.e., E_a is onto.

By the Dimension Theorem,

$$n+1=\dim(\mathcal{P}_n)=\dim(\ker(E_a))+\dim(\operatorname{im}(E_a)).$$

Since E_a is onto, $\dim(\operatorname{im}(E_a))=\dim(\mathbb{R})=1,$ and thus $\dim(\ker(E_a))=n.$

It now suffices to find n independent polynomials in ker(E_a).

Note that $(x - a)^j \in \ker(E_a)$ for j = 1, 2, ..., n, so $B \subseteq \ker(E_a)$.

Furthermore, B is independent because the polynomials in B have distinct degrees.

Since $|B| = n = \dim(\ker(E_a))$, B spans $\ker(E_a)$.

Therefore, B is a basis of $ker(E_a)$.

Let V and W be vector spaces, $T:V\to W$ a linear transformation, and

$$B = \left\{\vec{b}_1, \vec{b}_2, \ldots, \vec{b}_r, \vec{b}_{r+1}, \vec{b}_{r+2}, \ldots, \vec{b}_n\right\}$$

a basis of V with the property that $\left\{\vec{b}_{r+1},\vec{b}_{r+2},\ldots,\vec{b}_{n}\right\}$ is a basis of ker(T). Then

$$\left\{T(\vec{b}_1), T(\vec{b}_2), \ldots, T(\vec{b}_r)\right\}$$

is a basis of im(T), and therefore r = rank(T).

Let V and W be vector spaces, $T:V\to W$ a linear transformation, and

$$B = \left\{\vec{b}_1, \vec{b}_2, \ldots, \vec{b}_r, \vec{b}_{r+1}, \vec{b}_{r+2}, \ldots, \vec{b}_n\right\}$$

a basis of V with the property that $\left\{\vec{b}_{r+1},\vec{b}_{r+2},\ldots,\vec{b}_{n}\right\}$ is a basis of ker(T). Then

$$\left\{T(\vec{b}_1), T(\vec{b}_2), \dots, T(\vec{b}_r)\right\}$$

is a basis of im(T), and therefore r = rank(T).

Remark (How is this useful?)

Suppose V and W are vector spaces and $T: V \to W$ is a linear transformation. If you find a basis of $\ker(T)$, then this may be used to find a basis of $\operatorname{im}(T)$: extend the basis of $\ker(T)$ to a basis of V; applying the transformation T to each of the vectors that was added to the basis of $\ker(T)$ produces a set of vectors that is a basis of $\operatorname{im}(T)$.

Let $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, and let $T : \mathbf{M}_{22} \to \mathbf{M}_{22}$ be a linear transformation defined by

 $T(X) = XA - AX \text{ for all } X \in \mathbf{M}_{22}.$

Find a basis of ker(T) and a basis of im(T).

Let
$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
, and let $T : \mathbf{M}_{22} \to \mathbf{M}_{22}$ be a linear transformation defined by

T(X) = XA - AX for all $X \in \mathbf{M}_{22}$.

Find a basis of ker(T) and a basis of im(T).

Solution

First note that by the Dimension Theorem,

$$\dim(\ker(T)) + \dim(\operatorname{im}(T)) = \dim(\mathbf{M}_{22}) = 4.$$

Let
$$X = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. Then

$$T(X) = AX - XA$$

$$= \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} - \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} c & d \\ a & b \end{bmatrix} - \begin{bmatrix} b & a \\ d & c \end{bmatrix} = \begin{bmatrix} c - b & d - a \\ a - d & b - c \end{bmatrix}$$

Solution (continued)

If $X \in \ker(T)$, then $T(X) = \vec{0}_{22}$ so

$$\begin{cases} c-b=0\\ d-a=0\\ a-d=0\\ b-c=0 \end{cases} \implies \begin{cases} a=s\\ b=t\\ c=t\\ d=s \end{cases}$$
 for $s,t\in\mathbb{I}$

Therefore,

$$\ker(T) = \left\{ \begin{bmatrix} s & t \\ t & s \end{bmatrix} \middle| s, t \in \mathbb{R} \right\} = \operatorname{span} \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right\}.$$

Let

$$\mathbf{B} = \left\{ \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right], \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right] \right\}$$

Since B is independent and spans ker(T), B_k is a basis of ker(T).

Solution (continued)

To find a basis of im(T), extend the basis of ker(T) to a basis of M_{22} : here is one such basis

$$\left\{\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right], \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right], \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right], \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right]\right\}.$$

Therefore,

$$\mathbf{C} = \left\{ \mathbf{T} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \mathbf{T} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \right\} = \left\{ \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

is a basis of im(T).